论文标题
黑森铅笔和$(1,3)$的极化
The Hesse pencil and polarizations of type $(1,3)$ on Abelian surfaces
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this short note we prove two theorems, the first one is a sharpening of a result of Lange and Sernesi: the discriminant curve W of a general Abelian surface $A$ endowed with an irreducible polarization $D$ of type $(1,3)$ is an irreducible curve of degree $18$ whose singularities are exactly $36$ nodes and $72$ cusps. Moreover, we analyze the degeneration of the discriminant curve $W$ and its singularities as $A$ tends to the product of two equal elliptic curves. The second theorem, using the first one in order to prove a transversality assertion, shows that the general element of a family of surfaces constructed by Alessandro and Catanese is a smooth surface, thereby proving the existence of a new family of minimal surfaces of general type with $p_g=q=2, K^2=6$ and Albanese map of degree $3$.