论文标题
希尔伯特计划的载体泊松几何形状
Holonomic Poisson geometry of Hilbert schemes
论文作者
论文摘要
我们对Bottacin泊松结构的几何形状进行了详细研究,该结构是泊松表面的Hilbert方案,即配备有效的抗态分裂的光滑复杂表面。我们专注于三个主题,尽管在逻辑上是独立的,但与(特征)符号叶子和变形理论之间的相互作用联系在一起。首先,我们使用派生的符号几何形状的方法来构建希尔伯特方案的符号群,并开发其符号叶子的分类。其次,我们为泊松支架建立了局部正常形式,并将它们与感谢您的变性论点相结合,以验证希尔伯特计划是否满足了我们最近的猜想,以模块化矢量场的几何形状来表征自动泊松歧管。最后,使用可构造的捆绑方法,我们计算抗典型的除数降低并且仅具有准同质奇异性时,计算一阶泊松变形的空间。 (如果表面是投影的,后者是自动的。)一路上,我们发现希尔伯特方案的泊松几何形状与仿射变换的有限维级代数之间存在紧密的联系,这是由Syzygies介导的。特别是,我们发现希尔伯特方案具有自然的子各种,它是Nilpotent锥体的全球对应物,并且我们证明了仿射转化的谎言代数具有自然的双重空间,这是第一个这样的谎言代数。
We undertake a detailed study of the geometry of Bottacin's Poisson structures on Hilbert schemes of points in Poisson surfaces, i.e. smooth complex surfaces equipped with an effective anticanonical divisor. We focus on three themes that, while logically independent, are linked by the interplay between (characteristic) symplectic leaves and deformation theory. Firstly, we construct the symplectic groupoids of the Hilbert schemes and develop the classification of their symplectic leaves, using the methods of derived symplectic geometry. Secondly, we establish local normal forms for the Poisson brackets, and combine them with a toric degeneration argument to verify that Hilbert schemes satisfy our recent conjecture characterizing holonomic Poisson manifolds in terms of the geometry of the modular vector field. Finally, using constructible sheaf methods, we compute the space of first-order Poisson deformations when the anti-canonical divisor is reduced and has only quasi-homogeneous singularities. (The latter is automatic if the surface is projective.) Along the way, we find a tight connection between the Poisson geometry of the Hilbert schemes and the finite-dimensional Lie algebras of affine transformations, which is mediated by syzygies. In particular, we find that the Hilbert scheme has a natural subvariety that serves as a global counterpart of the nilpotent cone, and we prove that the Lie algebras of affine transformations have holonomic dual spaces -- the first such series of Lie algebras to be discovered.