论文标题

跨域购物和股票趋势分析

Cross-Domain Shopping and Stock Trend Analysis

论文作者

Pandey, Aditya, Fathiya, Haseeba, Patel, Nivedita

论文摘要

本文介绍了跨域趋势分析,旨在识别和分析股票价格,Twitter上的股票新闻以及电子商务网站上用户的行为之间的关系。该分析基于三个数据集:美国库存数据集,股票推文数据集和电子商务行为数据集。分析是使用Hadoop,Hive和Tableau进行的,可进行高效且可扩展的处理和可视化大型数据集。 该分析包括对Twitter情绪(正面和负面推文)的趋势分析和相关分析,包括推文情感与股票之间的相关性,股票趋势与购物行为之间的相关性以及基于不同时间切片的数据理解。通过随着时间的推移比较数据集的不同功能,我们希望深入了解驱动用户行为以及不同类别市场的因素。该分析的结果可以为企业和投资者提供宝贵的见解,以告知决策。 我们认为,我们的分析可以成为对这些主题进行进一步研究和调查的宝贵起点。

This paper presents a cross-domain trend analysis that aims to identify and analyze the relationships between stock prices, stock news on Twitter, and users' behaviors on e-commerce websites. The analysis is based on three datasets: a US stock dataset, a stock tweets dataset, and an e-commerce behavior dataset. The analysis is performed using Hadoop, Hive, and Tableau, allowing for efficient and scalable processing and visualizing large datasets. The analysis includes trend analysis of Twitter sentiment (positive and negative tweets) and correlation analysis, including the correlation between tweet sentiment and stocks, the correlation between stock trends and shopping behavior, and the understanding of data based on different slices of time. By comparing different features from the datasets over time, we hope to gain insight into the factors that drive user behavior as well as the market in different categories. The results of this analysis can provide valuable insights for businesses and investors to inform decision-making. We believe that our analysis can serve as a valuable starting point for further research and investigation into these topics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源