论文标题
统一矩阵的排名一乘扰动的动力学
Dynamics of a rank-one multiplicative perturbation of a unitary matrix
论文作者
论文摘要
我们提供了Fyodorov引入的单一基质的乘法扰动模型的动态研究。特别是,我们确定了确定性域的流动,该域将频谱与高概率结合在一起,将异常值与所有亚临界时间标准的典型特征值分开。这些结果是根据$ u $的通用假设获得的,这些假设适用于各种单一随机矩阵模型。
We provide a dynamical study of a model of multiplicative perturbation of a unitary matrix introduced by Fyodorov. In particular, we identify a flow of deterministic domains that bound the spectrum with high probability, separating the outlier from the typical eigenvalues at all sub-critical timescales. These results are obtained under generic assumptions on $U$ that hold for a variety of unitary random matrix models.