论文标题

图层不平衡感知多重网络嵌入

Layer Imbalance Aware Multiplex Network Embedding

论文作者

Chen, Kejia, Qiu, Yinchu, Liu, Zheng

论文摘要

多重网络嵌入是一种有效的技术,可以共同学习跨网络层的节点的低维表示。但是,层之间的边数可能有很大差异。由于学习偏见以及其他层中无关或冲突数据的不利影响,这种数据失衡将导致性能下降,尤其是在稀疏层上的降解。在本文中,提出了层不平衡的多重网络嵌入(Liamne)方法,其中根据目标层的嵌入式空间中的节点相似性,在辅助层中的边进行降采样,以实现平衡边缘分布并最大程度地减少与目标层相关的噪声关系。使用不同程度的层不平衡的现实世界数据集用于实验。结果表明,Liamne在目标层上的链接预测中明显优于几种最先进的多重网络嵌入方法。同时,通过采样方法在节点分类任务上评估的采样方法不会损害整个多重网络的综合表示。

Multiplex network embedding is an effective technique to jointly learn the low-dimensional representations of nodes across network layers. However, the number of edges among layers may vary significantly. This data imbalance will lead to performance degradation especially on the sparse layer due to learning bias and the adverse effects of irrelevant or conflicting data in other layers. In this paper, a Layer Imbalance Aware Multiplex Network Embedding (LIAMNE) method is proposed where the edges in auxiliary layers are under-sampled based on the node similarity in the embedding space of the target layer to achieve balanced edge distribution and to minimize noisy relations that are less relevant to the target layer. Real-world datasets with different degrees of layer imbalance are used for experimentation. The results demonstrate that LIAMNE significantly outperforms several state-of-the-art multiplex network embedding methods in link prediction on the target layer. Meantime, the comprehensive representation of the entire multiplex network is not compromised by the sampling method as evaluated by its performance on the node classification task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源