论文标题
$(1-ε)$ - 分布式,平行和半流设置中的最大加权匹配
$(1-ε)$-Approximate Maximum Weighted Matching in Distributed, Parallel, and Semi-Streaming Settings
论文作者
论文摘要
最大加权匹配(MWM)问题是分布式图算法中研究最精心研究的组合优化问题之一。尽管在这个问题方面有很长的发展以及Fischer,Mitrovic和Uitto [fmu22]的最新进展,他们给出了$ \ text {poly}(1/ε,\ log n)$ - 圆形算法,以获得$(1-ε)$ - 最大匹配的近似匹配的近似问题,它是否可以享受$(1- $),它是否可以超过$(1-)。 $ \ text {poly}(1/ε,\ log n)$ rounds in Colest模型。具有此类运行时间的算法仅以特殊的图类类别(例如双分类图[AKO18]和次要图形图[CS22]而闻名。对于一般图,先前已知的算法需要$(1/ε)$ roughs的指数级,以获得$(1-ε)$ - 近似解决方案[FFK21]或达到最多2/3 [Ako18]。在这项工作中,我们通过提供确定性$ \ text {poly}(1/ε,\ log n)$ - 用于计算$(1-ε)$的圆形算法的确定性$ \ text {poly}(1/ε,\ log n)$ - 近似MWM的通用图中的一般图中的近似MWM来解决。我们提出的解决方案扩展了Fischer,Mitrovic和Uitto [fmu22]的算法,在Duan和Pettie [DP14]的顺序算法中以及Faour,Fuchs和Kuhn [FFK21]中融合了。有趣的是,该解决方案还意味着使用$ \ text {poly}(1/ε,\ log n)$ span使用$ O(m)$处理器的机组人员PRAM算法。此外,随着Gupta和Peng [GP13]的减少,我们进一步获得了一种半流算法,并使用$ \ text {poly}(1/ε)$通过。当$ε$小于常数$ o(1)$但至少$ 1/\ log^{o(1)} n $时,我们的算法比AHN和Guha的$ \ $ \ text {poly}(1/ε,\ log n)$更有效$(1/ε)^{o(1/ε^2)} $ - 通过算法[GKMS19]。
The maximum weighted matching (MWM) problem is one of the most well-studied combinatorial optimization problems in distributed graph algorithms. Despite a long development on the problem, and the recent progress of Fischer, Mitrovic, and Uitto [FMU22] who gave a $\text{poly}(1/ε, \log n)$-round algorithm for obtaining a $(1-ε)$-approximate solution for unweighted maximum matching, it had been an open problem whether a $(1-ε)$-approximate MWM can be obtained in $\text{poly}(1/ε, \log n)$ rounds in the CONGEST model. Algorithms with such running times were only known for special graph classes such as bipartite graphs [AKO18] and minor-free graphs [CS22]. For general graphs, the previously known algorithms require exponential in $(1/ε)$ rounds for obtaining a $(1-ε)$-approximate solution [FFK21] or achieve an approximation factor of at most 2/3 [AKO18]. In this work, we settle this open problem by giving a deterministic $\text{poly}(1/ε, \log n)$-round algorithm for computing a $(1-ε)$-approximate MWM for general graphs in the CONGEST model. Our proposed solution extends the algorithm of Fischer, Mitrovic, and Uitto [FMU22], blends in the sequential algorithm from Duan and Pettie [DP14] and the work of Faour, Fuchs, and Kuhn [FFK21]. Interestingly, this solution also implies a CREW PRAM algorithm with $\text{poly}(1/ε, \log n)$ span using only $O(m)$ processors. In addition, with the reduction from Gupta and Peng [GP13], we further obtain a semi-streaming algorithm with $\text{poly}(1/ε)$ passes. When $ε$ is smaller than a constant $o(1)$ but at least $1/\log^{o(1)} n$, our algorithm is more efficient than both Ahn and Guha's $\text{poly}(1/ε, \log n)$-passes algorithm [AG13] and Gamlath, Kale, Mitrovic, and Svensson's $(1/ε)^{O(1/ε^2)}$-passes algorithm [GKMS19].