论文标题

相干产生,对称代数和希尔伯特空间碎片化

Coherence generation, symmetry algebras and Hilbert space fragmentation

论文作者

Andreadakis, Faidon, Zanardi, Paolo

论文摘要

希尔伯特空间碎片化是一种新型的封闭量子系统中的恐怖性破坏。最近,利用一种代数方法来提供基于其(概括)对称性的汉密尔顿系统的\ emph {family}的希尔伯特空间碎片的定义。在本文中,我们揭示了上述物理系统的分类与它们的相干产生属性之间的简单联系,该属性通过相干产生能力(CGP)量化。最大CGP(基于与每个汉密尔顿家族的代数相关的基础)与独立的Krylov子空间$ K $的数量完全相关,这正是系统分类中使用的特征。为了获得进一步的见解,我们在数值上模拟了具有普通对称性和希尔伯特空间片段化的范式模型,将每种情况下CGP的行为与系统维度进行了比较。更一般而言,允许时间演变是指定代数中的任何统一渠道,我们在分析上表明,CGP的HAAR平均值的缩放仅取决于$ K $。这些结果说明了连贯产生与对称代数之间的直观关系。

Hilbert space fragmentation is a novel type of ergodicity breaking in closed quantum systems. Recently, an algebraic approach was utilized to provide a definition of Hilbert space fragmentation characterizing \emph{families} of Hamiltonian systems based on their (generalized) symmetries. In this paper, we reveal a simple connection between the aforementioned classification of physical systems and their coherence generation properties, quantified by the coherence generating power (CGP). The maximum CGP (in the basis associated to the algebra of each family of Hamiltonians) is exactly related to the number of independent Krylov subspaces $K$, which is precisely the characteristic used in the classification of the system. In order to gain further insight, we numerically simulate paradigmatic models with both ordinary symmetries and Hilbert space fragmentation, comparing the behavior of the CGP in each case with the system dimension. More generally, allowing the time evolution to be any unitary channel in a specified algebra, we show analytically that the scaling of the Haar averaged value of the CGP depends only on $K$. These results illustrate the intuitive relationship between coherence generation and symmetry algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源