论文标题
在量子场理论中的铃铛 - 霍尔 - 霍 - 霍 - 霍尔特不平等现象的Feynman Path Path的积分公式
On the Feynman path integral formulation of the Bell-Clauser-Horne-Shimony-Holt inequality in Quantum Field Theory
论文作者
论文摘要
通过采用先前引入的自由标量量子场理论模型{peruzzo:2022PWV},我们尝试在Feynman Path积分内制定Bell-Chsh不平等。这种可能性取决于这样的观察,即贝尔 - 奇克(Bell-Chsh)的不平等表现出对量子场理论的自然扩展,使其与订购$ t $的时间兼容。通过将Feynman繁殖器视为分布,并引入合适的定位紧凑型支持平滑测试功能,我们可以为Bell-Chsh不平等的路径积分设置,从而恢复了规范量化的相同结果。
By employing a free scalar Quantum Field Theory model previously introduced \cite{Peruzzo:2022pwv}, we attempt at formulating the Bell-CHSH inequality within the Feynman path integral. This possibility relies on the observation that the Bell-CHSH inequality exhibits a natural extension to Quantum Field Theory in such a way that it is compatible with the time ordering $T$. By treating the Feynman propagator as a distribution and by introducing a suitable localizing set of compact support smooth test functions, we work out the path integral setup for the Bell-CHSH inequality, recovering the same results of the canonical quantization.