论文标题
Abel-Jacobi部分的平滑压缩
Smooth Compactifications of the Abel-Jacobi Section
论文作者
论文摘要
对于$θ$,一个小的通用通用稳定性条件$ 0 $ $ 0 $和$ a $ a的整数向量,高达$ k(2g-2)$,空间$ \ overline {m} _ {g,n}^θ$将abel-jacobi截面解析到压缩的jacobian pic^the un观察到Holmes-Molcho-Pandharipande-pixton-Schmitt位于Marcus和Wise的Space $ \ Textbf {div} $内部,它们的回调到LOC的橡胶空间。 CIT保持光滑。这提供了平滑而模块化的爆炸$ \ widetilde {m} _ {g,n}^θ$稳定曲线的模量空间的空间,可以通过几种旧和新颖的方法来计算对数的双重冲突周期。
For $θ$ a small generic universal stability condition of degree $0$ and $A$ a vector of integers adding up to $k(2g-2)$, the spaces $\overline{M}_{g,n}^θ$ resolving the Abel-Jacobi section to the compactified Jacobian Pic^θconstructed in the work of Abreu-Pacini and Holmes-Molcho-Pandharipande-Pixton-Schmitt are observed to lie inside the space $\textbf{Div}$ of Marcus and Wise, and their pullback to the rubber space of loc. cit to be smooth. This provides smooth and modular blowups $\widetilde{M}_{g,n}^θ$ of the moduli space of stable curves on which the logarithmic double ramification cycle can be calculated by several methods, old and novel.