论文标题

关键状态和局部状态之间的确切新移动边缘

Exact new mobility edges between critical and localized states

论文作者

Zhou, Xin-Chi, Wang, Yongjian, Poon, Ting-Fung Jeffrey, Zhou, Qi, Liu, Xiong-Jun

论文摘要

该疾病系统拥有三种类型的基本量子状态,即被称为扩展,局部和关键状态,其中关键状态的探索程度要少得多。在这里,我们提出了一类精确解决的模型,该模型具有一种新型的精确迁移率边缘(MES),将局部状态与健壮的关键状态分开,并提出实验实现。在这里,鲁棒性是指对单粒子扰动的稳定性和几个体制状态中的相互作用。可以解决的一维模型由跳跃术语和现场电势的准赛车类型列出。分析结果使我们能够明确地获得关键状态,否则需要进行艰苦的数值验证,包括仔细的有限尺寸尺度。临界状态和新的ME被证明是鲁棒的,说明了这里揭示的通用机制,即关键状态受热力学极限中的ic磷脂跳跃术语的保护。此外,我们提出了一种新型的实验方案,以实现不可衡量的Rydberg Raman Superarray中的确切可解决的模型和新的MES。这项工作可能铺平了一种通过实验性可行性来精确探索关键状态和新的ME物理学的方法。

The disorder systems host three types of fundamental quantum states, known as the extended, localized, and critical states, of which the critical states remain being much less explored. Here we propose a class of exactly solvable models which host a novel type of exact mobility edges (MEs) separating localized states from robust critical states, and propose experimental realization. Here the robustness refers to the stability against both single-particle perturbation and interactions in the few-body regime. The exactly solvable one-dimensional models are featured by quasiperiodic mosaic type of both hopping terms and on-site potentials. The analytic results enable us to unambiguously obtain the critical states which otherwise require arduous numerical verification including the careful finite size scalings. The critical states and new MEs are shown to be robust, illustrating a generic mechanism unveiled here that the critical states are protected by zeros of quasiperiodic hopping terms in the thermodynamic limit. Further, we propose a novel experimental scheme to realize the exactly solvable model and the new MEs in an incommensurate Rydberg Raman superarray. This work may pave a way to precisely explore the critical states and new ME physics with experimental feasibility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源