论文标题

HIER:通过等级正规化等级标签以外的公制学习

HIER: Metric Learning Beyond Class Labels via Hierarchical Regularization

论文作者

Kim, Sungyeon, Jeong, Boseung, Kwak, Suha

论文摘要

长期以来,以人类标记的阶级之间的等价形式给出了指标学习的监督。尽管这种类型的监督是数十年来一直是公制学习的基础,但我们认为它阻碍了该领域的进一步发展。在这方面,我们提出了一种新的正则化方法,称为hier,以发现训练数据的潜在语义层次结构,并部署层次结构,以提供比常见度量度学习损失所引起的阶层间可分离性更丰富,更细粒度的监督。层次代理是可学习的参数,并且每个参数都经过训练,可以作为一组数据或其他代理的祖先,以近似它们中的语义层次结构。 HIER处理代理以及双曲空间中的数据,因为该空间的几何特性非常适合代表其分层结构。在四个标准基准测试中评估了HIER的功效,在与它们集成时,它一致地提高了常规方法的性能,因此在几乎所有设置中都超过了现有的双曲线指标学习技术,甚至超过了现有的双曲线指标学习技术。

Supervision for metric learning has long been given in the form of equivalence between human-labeled classes. Although this type of supervision has been a basis of metric learning for decades, we argue that it hinders further advances in the field. In this regard, we propose a new regularization method, dubbed HIER, to discover the latent semantic hierarchy of training data, and to deploy the hierarchy to provide richer and more fine-grained supervision than inter-class separability induced by common metric learning losses.HIER achieves this goal with no annotation for the semantic hierarchy but by learning hierarchical proxies in hyperbolic spaces. The hierarchical proxies are learnable parameters, and each of them is trained to serve as an ancestor of a group of data or other proxies to approximate the semantic hierarchy among them. HIER deals with the proxies along with data in hyperbolic space since the geometric properties of the space are well-suited to represent their hierarchical structure. The efficacy of HIER is evaluated on four standard benchmarks, where it consistently improved the performance of conventional methods when integrated with them, and consequently achieved the best records, surpassing even the existing hyperbolic metric learning technique, in almost all settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源