论文标题
QPANDA:多种应用程序场景的高性能量子计算框架
QPanda: high-performance quantum computing framework for multiple application scenarios
论文作者
论文摘要
随着嘈杂的中等规模量子(NISQ)设备的诞生,以及在随机数抽样和玻色子采样中对“量子至上”的验证,越来越多的领域希望使用量子计算机来解决特定的问题,例如空气动力学设计,路线分配,汇编,量子化学选择,财务化学预测,量子化学模拟,以找到新材料的质量质量和质量质量的质量质量质量和量子质量的质量质量,并构成了量子质量的质量质量,并构成了量子质量的质量。但是,这些字段仍然需要不断地探索适应当前NISQ机器的量子算法,因此需要面临多尺寸的量子编程框架,并且需要面临多个scenarios和应用程序需求。因此,本文提出了QPANDA,这是一种面向应用程序的量子编程框架,具有高性能模拟。例如,设计基于IT的量子化学模拟算法,以探索新材料,建立量子机学习框架,以服务融资等。该框架实现了量子电路的高性能模拟,对量子计算机的融合处理后端的配置,以及量子计算机和超级计算机的融合处理,以及编译和优化方法的NISQ Machines的量子和优化方法。最后,该实验表明,可以使用量子电路编译和优化的接口在量子处理器上以高保真度执行量子作业,并具有更好的仿真性能。
With the birth of Noisy Intermediate Scale Quantum (NISQ) devices and the verification of "quantum supremacy" in random number sampling and boson sampling, more and more fields hope to use quantum computers to solve specific problems, such as aerodynamic design, route allocation, financial option prediction, quantum chemical simulation to find new materials, and the challenge of quantum cryptography to automotive industry security. However, these fields still need to constantly explore quantum algorithms that adapt to the current NISQ machine, so a quantum programming framework that can face multi-scenarios and application needs is required. Therefore, this paper proposes QPanda, an application scenario-oriented quantum programming framework with high-performance simulation. Such as designing quantum chemical simulation algorithms based on it to explore new materials, building a quantum machine learning framework to serve finance, etc. This framework implements high-performance simulation of quantum circuits, a configuration of the fusion processing backend of quantum computers and supercomputers, and compilation and optimization methods of quantum programs for NISQ machines. Finally, the experiment shows that quantum jobs can be executed with high fidelity on the quantum processor using quantum circuit compile and optimized interface and have better simulation performance.