论文标题

雅各比的动力虫洞方法

The Jacobi metric approach for dynamical wormholes

论文作者

Duenas-Vidal, Álvaro, Andino, Oscar Lasso

论文摘要

我们为动态虫洞介绍了雅各比公制形式主义。我们表明,在各向同性的动力学空间中,可以使用雅各比度量标准找到地球方程的第一个积分,而无需任何使用地球方程。这使我们能够将动态虫洞中的大地运动运动减少到riemannian歧管中定义的动力学。然后,利用雅各比形式主义,我们研究了雅各比度量框架中的圆形稳定轨道,用于动态虫洞背景。最后,我们还表明,雅各比度量家族的高斯曲率与静态虫洞的爆发状态直接相关,从而通过其Jacobi度量的高斯曲率表征蠕虫孔的空间。

We present the Jacobi metric formalism for dynamical wormholes. We show that in isotropic dynamical spacetimes , a first integral of the geodesic equations can be found using the Jacobi metric, and without any use of geodesic equation. This enables us to reduce the geodesic motion in dynamical wormholes to a dynamics defined in a Riemannian manifold. Then, making use of the Jacobi formalism, we study the circular stable orbits in the Jacobi metric framework for the dynamical wormhole background. Finally, we also show that the Gaussian curvature of the family of Jacobi metrics is directly related, as in the static case, to the flare-out condition of the dynamical wormhole, giving a way to characterize a wormhole spacetime by the sign of the Gaussian curvature of its Jacobi metric only.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源