论文标题

多模纤维微孔子中的噪声式前向Brillouin激光器

Noise-squeezed forward Brillouin lasers in multimode fiber microresonators

论文作者

Nie, Mingming, Jia, Kunpeng, Zhu, Shining, Xie, Zhenda, Huang, Shu-Wei

论文摘要

由于声学和光学信号处理之间的婚姻,低功率和紧凑的微孔子中刺激的布里鲁因散射(SB)在空腔非线性光子学中创造了一个新领域。考虑到向后SB和正向SBS过程之间的基本差异,观察同一微孔子中这两个过程的共存以及向前刺激的Brillouin Laser(FSBL)的光子噪声抑制是一项挑战。在本文中,我们演示了第一个20-DB-Noise-squeezed FSBL的生成,这是通过基于多模片纤维(MMF)的超高质量的Fabry-Perrot(FP)微孔子在超高质量的Fabry-Perrot(FP)微孔子中激发的。多个FSBL和BSBLs在多模型微孔子中的多个模式SBS过程级联,其中向后SBS和向前SBS工艺之间的级联过程(pump-bbbl-fsbl)提供了通往额外噪声挤压的途径,从而使FSBL相位噪声为-120 dbc/hz in 1 mhz oftsetss forminss 1 mhz oftsetssset。此外,我们展示了高级BSBL的第一个Brillouin-Kerr Soliton,该sbl也与FSBL共存。我们的实验结果表明,MMF FP微孔子作为具有超高相干性的高维非线性腔动力学和激光源的理想测试床的潜力。

Stimulated Brillouin scattering (SBS) in low-power and compact microresonators has created a new field in cavity nonlinear photonics due to the marriage between acoustic and optical signal processing. Considering the fundamental differences between backward SBS and forward SBS processes, it is challenging to observe the coexistence of both processes in the same microresonator, as well as the photon noise suppression for the forward stimulated Brillouin laser (FSBL). In this paper, we demonstrate the first 20-dB-noise-squeezed FSBL generation excited by the coexisting backward SBL (BSBL) in an ultrahigh-quality-factor Fabry-Perot (FP) microresonator based on multimode fiber (MMF). Multiple FSBLs and BSBLs are cascaded by multiple intermodal SBS processes in the multimode microresonator, where the cascaded process between backward SBS and forward SBS process (pump-BSBL-FSBL) provides a route towards additional noise squeezing, rendering the FSBL phase noise to be -120 dBc/Hz at 1 MHz offset frequency. Furthermore, we demonstrate the first Brillouin-Kerr soliton from a high-order BSBL, which also coexists with FSBLs. Our experimental results show the potential of MMF FP microresonator as an ideal testbed for high-dimensional nonlinear cavity dynamics and laser source with ultrahigh coherence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源