论文标题

渐近平坦的空位上的准线性波方程,并应用于Kerr黑洞

Quasilinear wave equations on asymptotically flat spacetimes with applications to Kerr black holes

论文作者

Dafermos, Mihalis, Holzegel, Gustav, Rodnianski, Igor, Taylor, Martin

论文摘要

我们证明了小型数据解决方案的全球存在和衰减,以在各种渐近平坦的时空背景上对一类准线性波方程式进行,特别是在水平,奇迹和被困的无效的大地测量时,尤其是schwarzschild and schwarzschild and $ pert a fert thambles themers of pert \ wert fert fert fert fert fert。相对论。我们的方法有两个区别。第一个方面是其二元定位的性质:分析的非平凡部分完全减少到时间翻译不变的$ r^p $加权的估计,本着[dr09]的精神,可用于二元时间样物,对于大型$ r $而言,该估计值是进出的。然后,全球存在和衰减都立即在连续的此类时间屏幕上进行基础迭代,而无需进一步的全局bootstrap。第二个,更基本的方面是我们直接使用“黑框”线性不均匀的能量估计,以及一个新颖但基本的物理空间高阶标识,不需要捕获捕获的结构,并且可以强大地扰动。在克尔黑洞的具体示例中,可以直接从文献[drsr16]中引用所需的线性不均匀估计,而在许多情况下,可以轻松地显示出额外的顶级物理空间身份(我们在附录中包括kerr案例的证明$ \ vert a \ vert a \ vert a \ vert a \ vert a \ ll m $,这可以理解,这可以在此上下文中所理解。特别是,该方法规避了产生纯粹的物理空间身份捕获捕获的需求,或者要仔细分析与时间依赖度指标的波浪操作员对频率投影的换向特性。

We prove global existence and decay for small-data solutions to a class of quasilinear wave equations on a wide variety of asymptotically flat spacetime backgrounds, allowing in particular for the presence of horizons, ergoregions and trapped null geodesics, and including as a special case the Schwarzschild and very slowly rotating $\vert a \vert \ll M$ Kerr family of black holes in general relativity. There are two distinguishing aspects of our approach. The first aspect is its dyadically localised nature: The nontrivial part of the analysis is reduced entirely to time-translation invariant $r^p$-weighted estimates, in the spirit of [DR09], to be applied on dyadic time-slabs which for large $r$ are outgoing. Global existence and decay then both immediately follow by elementary iteration on consecutive such time-slabs, without further global bootstrap. The second, and more fundamental, aspect is our direct use of a "blackbox" linear inhomogeneous energy estimate on exactly stationary metrics, together with a novel but elementary physical space top order identity that need not capture the structure of trapping and is robust to perturbation. In the specific example of Kerr black holes, the required linear inhomogeneous estimate can then be quoted directly from the literature [DRSR16], while the additional top order physical space identity can be shown easily in many cases (we include in the Appendix a proof for the Kerr case $\vert a \vert \ll M$, which can in fact be understood in this context simply as a perturbation of Schwarzschild). In particular, the approach circumvents the need either for producing a purely physical space identity capturing trapping or for a careful analysis of the commutation properties of frequency projections with the wave operator of time-dependent metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源