论文标题
现场诱导的电阻转换的原子模型变化记忆
An Atomistic Model of Field-Induced Resistive Switching in Valence Change Memory
论文作者
论文摘要
在价更改内存(VCM)单元格中,通过在外部字段下创建和重新分布点缺陷,可以可逆地调节绝缘开关层的电导。由于它们通常无序的原子结构和缺陷的不均匀排列,因此很难对这些设备的开关动力学进行准确的模拟。为了解决这个问题,我们引入了用于建模VCM单元的原子框架。它结合了一种随机的动力学蒙特卡洛方法,用于原子重排和量子传输方案,均通过使用密度功能理论(DFT)的输入在AB-Initio级别进行参数。这些步骤中的每一个直接在基础原子结构上运行。因此,该模型将设备的能量格局和电子结构与其开关特性联系起来。我们将此模型应用于模拟TIN/HFO2/TI/TIN堆栈中高阻抗状态和低阻力状态之间的非易失性切换,并分析电导跃迁的动力学和随机性。我们还解决了价值变化机制引起的电流流量的原子质,发现在邻加的HF原子之间形成了导电路径。此处开发的模型可以应用于不同的材料系统,以评估其电阻开关电位,既可以用作常规记忆细胞和神经形态计算原则。
In Valence Change Memory (VCM) cells, the conductance of an insulating switching layer is reversibly modulated by creating and redistributing point defects under an external field. Accurate simulations of the switching dynamics of these devices can be difficult due to their typically disordered atomic structures and inhomogeneous arrangements of defects. To address this, we introduce an atomistic framework for modelling VCM cells. It combines a stochastic Kinetic Monte Carlo approach for atomic rearrangement with a quantum transport scheme, both parameterized at the ab-initio level by using inputs from Density Functional Theory (DFT). Each of these steps operates directly on the underlying atomic structure. The model thus directly relates the energy landscape and electronic structure of the device to its switching characteristics. We apply this model to simulate non-volatile switching between high- and low-resistance states in an TiN/HfO2/Ti/TiN stack, and analyze both the kinetics and stochasticity of the conductance transitions. We also resolve the atomic nature of current flow resulting from the valence change mechanism, finding that conductive paths are formed between the undercoordinated Hf atoms neighboring oxygen vacancies. The model developed here can be applied to different material systems to evaluate their resistive switching potential, both for use as conventional memory cells and as neuromorphic computing primitives.