论文标题
使用机器学习技术对5G网络上的大规模细胞级服务估算
Large-Scale Cell-Level Quality of Service Estimation on 5G Networks Using Machine Learning Techniques
论文作者
论文摘要
这项研究提出了一个通用的机器学习框架,以使用繁忙的时间计数器数据以及网络拓扑结合几个技术参数,以给定的吞吐量值估算给定吞吐量值的交通计量级经验率。依靠特征工程技术,提出了数十个其他预测因子,以增强原始相关计数值对相应目标的影响,并有效地表示附近空间位置内的单元组之间的潜在相互作用。端到端的回归建模应用于转换的数据,结果在不同大小的看不见的城市中提出。
This study presents a general machine learning framework to estimate the traffic-measurement-level experience rate at given throughput values in the form of a Key Performance Indicator for the cells on base stations across various cities, using busy-hour counter data, and several technical parameters together with the network topology. Relying on feature engineering techniques, scores of additional predictors are proposed to enhance the effects of raw correlated counter values over the corresponding targets, and to represent the underlying interactions among groups of cells within nearby spatial locations effectively. An end-to-end regression modeling is applied on the transformed data, with results presented on unseen cities of varying sizes.