论文标题
机器人技术中分布数据的系统级别的视图
A System-Level View on Out-of-Distribution Data in Robotics
论文作者
论文摘要
当测试条件与培训数据中所代表的条件不同时,所谓的分布(OOD)输入可以在现代机器人自主堆栈中获得学习组件的可靠性。因此,应对OOD数据是在实现信任学习的开放世界自治方面的重要挑战。在本文中,我们旨在在数据驱动的机器人系统中揭开OOD数据的主题及其相关的挑战,从而在ML社区中与新兴范式联系起来,从而研究了OOD数据对孤立模型的影响。我们认为,作为机器人主义者,我们应该推理机器人在OOD条件下运行时的总体\ textit {System-level}能力。我们重点介绍了有关此系统级别对OOD问题的关键研究问题,以指导未来的研究以安全可靠的学习支持自治。
When testing conditions differ from those represented in training data, so-called out-of-distribution (OOD) inputs can mar the reliability of learned components in the modern robot autonomy stack. Therefore, coping with OOD data is an important challenge on the path towards trustworthy learning-enabled open-world autonomy. In this paper, we aim to demystify the topic of OOD data and its associated challenges in the context of data-driven robotic systems, drawing connections to emerging paradigms in the ML community that study the effect of OOD data on learned models in isolation. We argue that as roboticists, we should reason about the overall \textit{system-level} competence of a robot as it operates in OOD conditions. We highlight key research questions around this system-level view of OOD problems to guide future research toward safe and reliable learning-enabled autonomy.