论文标题

有效田间理论中弦乐单构的出现

Emergence of String Monodromy in Effective Field Theory

论文作者

Chen, Alan Shih-Kuan, Elvang, Henriette, Herderschee, Aidan

论文摘要

字符串monodromy是带有顶点算子的不同顺序的开放式弦树幅度之间的一组线性关系。在这封信中,我们展示了这些本质上弦的关系如何从当地的假设和田间理论Kleiss-Kuijf(KK)和Bern-Carrasco-Johansson(BCJ)关系中从低能量有效的现场理论中出现。具体而言,我们研究了双活动标量模型有效场理论(BAS EFT)。我们将田间理论KK和BCJ关系强加于BAS EFT振幅的两个颜色订购之一,并表明第二种颜色订购具有一组新兴的线性关系,如以36个衍生的4点选中所检查的正好是单构型关系。 4分结果取决于6点BAS EFT振幅的一致分解与6点KK BCJ条件之间的微妙相互作用。由于分析的结果,4点Z理论的树幅度被引导到$ s,t,u $中的对称函数,其简单的凸起形式具有自由参数,可在与z理论匹配时捕获所有奇数zeta值。

String monodromy is a set of linear relations among open string tree amplitudes with different orderings of the vertex operators. In this Letter, we show how these intrinsically stringy relations emerge in low-energy effective field theory from the assumptions of locality and the field theory Kleiss-Kuijf (KK) and Bern-Carrasco-Johansson (BCJ) relations. Specifically, we study the bi-adjoint scalar model effective field theory (BAS EFT). We impose the field theory KK and BCJ relations on one of the two color-orderings of the BAS EFT amplitudes and show that the second color-ordering has an emergent set of linear relations that, as checked at 4-point to 36-derivative order, are exactly the monodromy relations. The 4-point results depend on a delicate interplay between consistent factorization of 6-point BAS EFT amplitudes and the 6-point KK BCJ conditions. As a consequence of the analysis, the 4-point Z-theory tree amplitudes are bootstrapped up to a symmetric function in $s,t,u$ whose simple exponentiated form has free parameters that capture all the odd zeta values when matched to Z-theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源