论文标题

部分可观测时空混沌系统的无模型预测

Towards Disentangling Relevance and Bias in Unbiased Learning to Rank

论文作者

Zhang, Yunan, Yan, Le, Qin, Zhen, Zhuang, Honglei, Shen, Jiaming, Wang, Xuanhui, Bendersky, Michael, Najork, Marc

论文摘要

无偏见的学习(ULTR)研究(ULTR)研究从隐式用户反馈数据(例如点击)中减轻各种偏见的问题,并且最近一直受到关注。现实世界应用的一种流行的超级方法使用了两个较高的体系结构,其中点击建模被分解为具有常规输入功能的相关塔,以及具有偏见相关输入的偏置塔,例如文档的位置。成功的分解将使相关塔可以免于偏见。在这项工作中,我们确定了一个关键问题,即现有的超级方法忽略了 - 偏见塔可以通过基本的真实相关性与相关塔混淆。特别是,这些职位由记录策略(即先前的生产模型)确定,该模型将拥有相关信息。我们给出理论分析和经验结果,以显示由于这种相关性而对相关塔的负面影响。然后,我们提出了三种方法来通过更好地解开相关性和偏见来减轻负面混杂效应。对受控公共数据集和大规模行业数据集的经验结果均显示了拟议方法的有效性。

Unbiased learning to rank (ULTR) studies the problem of mitigating various biases from implicit user feedback data such as clicks, and has been receiving considerable attention recently. A popular ULTR approach for real-world applications uses a two-tower architecture, where click modeling is factorized into a relevance tower with regular input features, and a bias tower with bias-relevant inputs such as the position of a document. A successful factorization will allow the relevance tower to be exempt from biases. In this work, we identify a critical issue that existing ULTR methods ignored - the bias tower can be confounded with the relevance tower via the underlying true relevance. In particular, the positions were determined by the logging policy, i.e., the previous production model, which would possess relevance information. We give both theoretical analysis and empirical results to show the negative effects on relevance tower due to such a correlation. We then propose three methods to mitigate the negative confounding effects by better disentangling relevance and bias. Empirical results on both controlled public datasets and a large-scale industry dataset show the effectiveness of the proposed approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源