论文标题
POIBERT:基于变压器推荐问题的基于变压器的模型
POIBERT: A Transformer-based Model for the Tour Recommendation Problem
论文作者
论文摘要
旅游行程计划和建议是参观陌生城市的游客的挑战性问题。许多旅行建议算法仅考虑诸如兴趣点(POI)的位置和普及之类的因素,但是它们的解决方案可能与用户自己的偏好和其他位置约束不符。此外,这些解决方案并未根据用户过去的POIS选择来考虑用户的偏好。在本文中,我们提出了Poibert,这是一种使用BERT语言模型推荐个性化行程的算法。 Poibert以非常成功的BERT语言模型为基础,该语言模型对我们的行程推荐任务进行了新颖的适应,以及一种迭代的方法来产生连续的POI。 我们的建议算法能够生成一系列POIS,该pois基于与类似游客的过去轨迹优化时间和用户在POI类别中的偏好。我们的旅行建议算法是通过将行程推荐问题调整为自然语言处理(NLP)中的句子完成问题来建模的。我们还创新了一种迭代算法,以生成满足过去轨迹的时间限制的旅行行程。使用七个城市的Flickr数据集,实验结果表明,基于回忆,精度和F1分数的度量,我们的算法超出了许多序列预测算法。
Tour itinerary planning and recommendation are challenging problems for tourists visiting unfamiliar cities. Many tour recommendation algorithms only consider factors such as the location and popularity of Points of Interest (POIs) but their solutions may not align well with the user's own preferences and other location constraints. Additionally, these solutions do not take into consideration of the users' preference based on their past POIs selection. In this paper, we propose POIBERT, an algorithm for recommending personalized itineraries using the BERT language model on POIs. POIBERT builds upon the highly successful BERT language model with the novel adaptation of a language model to our itinerary recommendation task, alongside an iterative approach to generate consecutive POIs. Our recommendation algorithm is able to generate a sequence of POIs that optimizes time and users' preference in POI categories based on past trajectories from similar tourists. Our tour recommendation algorithm is modeled by adapting the itinerary recommendation problem to the sentence completion problem in natural language processing (NLP). We also innovate an iterative algorithm to generate travel itineraries that satisfies the time constraints which is most likely from past trajectories. Using a Flickr dataset of seven cities, experimental results show that our algorithm out-performs many sequence prediction algorithms based on measures in recall, precision and F1-scores.