论文标题
模式结构通过检测和未发现的光重建
Mode structure reconstruction by detected and undetected light
论文作者
论文摘要
我们介绍了一种用于重建多模光场的新技术,基于同时利用广义的Glauber的$ K^{th} $ - 订购相关函数$ g^{(k)} $和最近提出的最近提出的反相关功能(dubbed $θ^(k)(k)$),是poisson的poisson,我们从实验上证明,相对于仅基于$ g^{(k)} $的重建方法获得的方法,这种方法就以更高的保真度进行了模式重建,甚至需要更少的“先验”信息。我们技术的可靠性和多功能性使其适合于在光学量子测量的真实应用中广泛使用,从量子信息到量子计量学,尤其是当人们需要表征背景噪声的情况下,需要表征单个光子发射器的合奏(例如,到期(例如,剩余的激发激励,杂物,杂乱的轻度,杂乱的光),杂乱无章的光线,或不需要的流感)。
We introduce a novel technique for the reconstruction of multimode optical fields, based on simultaneously exploiting both the generalized Glauber's $K^{th}$-order correlation function $g^{(K)}$ and a recently proposed anti-correlation function (dubbed $θ^{(K)}$) which is resilient to Poissonian noise. We experimentally demonstrate that this method yields mode reconstructions with higher fidelity with respect to those obtained with reconstruction methods based only on $g^{(K)}$'s, even requiring less "a priori" information. The reliability and versatility of our technique make it suitable for a widespread use in real applications of optical quantum measurement, from quantum information to quantum metrology, especially when one needs to characterize ensembles of single-photon emitters in the presence of background noise (due, for example, to residual excitation laser, stray light, or unwanted fluorescence).