论文标题
荷斯坦模型中的累积扩展:光谱函数和迁移率
Cumulant expansion in the Holstein model: Spectral functions and mobility
论文作者
论文摘要
我们检查了二阶累积扩展(CE)在荷斯坦极化子计算光谱函数,准粒子特性和迁移率方面的有效性范围。我们设计了一个有效的数值实现,使我们能够以广泛的温度,电子轴耦合和声子频率进行比较。对于基准测试,我们使用动态均值场理论(DMFT),正如我们最近显示的那样,即使在低维度下,在整个参数空间中也具有相当准确的光谱函数。我们发现,在一个维度上,CE在中间耦合方面都可以很好地解决准粒子和第一个卫星峰。在高温下,电荷迁移率在弱耦合的限制和$μ\ propto t^{ - 3/2} $中,假定功率定律$μ\ propto t^{ - 2} $,以实现更强的耦合。我们发现,对于更强的耦合,CE给出的结果比自洽的Migdal近似(SCMA)稍好,而单发的Migdal近似仅适用于非常弱的电子 - Phonon相互作用。我们还分析了原子限制和频谱总和规则。我们在CE中的矩中得出了一个分析表达式,发现它们精确到第四阶,而不是SCMA确切到三阶。最后,我们分析了更高维度的结果。
We examine the range of validity of the second-order cumulant expansion (CE) for the calculation of spectral functions, quasiparticle properties, and mobility of the Holstein polaron. We devise an efficient numerical implementation that allows us to make comparisons in a broad interval of temperature, electron-phonon coupling, and phonon frequency. For a benchmark, we use the dynamical mean-field theory (DMFT) which gives, as we have recently shown, rather accurate spectral functions in the whole parameter space, even in low dimensions. We find that in one dimension, the CE resolves well both the quasiparticle and the first satellite peak in a regime of intermediate coupling. At high temperatures, the charge mobility assumes a power law $μ\propto T^{-2}$ in the limit of weak coupling and $μ\propto T^{-3/2}$ for stronger coupling. We find that, for stronger coupling, the CE gives slightly better results than the self-consistent Migdal approximation (SCMA), while the one-shot Migdal approximation is appropriate only for a very weak electron-phonon interaction. We also analyze the atomic limit and the spectral sum rules. We derive an analytical expression for the moments in CE and find that they are exact up to the fourth order, as opposed to the SCMA where they are exact to the third order. Finally, we analyze the results in higher dimensions.