论文标题
Vaught对离散有序结构的理论的猜想
Vaught's conjecture for theories of discretely ordered structures
论文作者
论文摘要
令$ t $成为可计数的完整一阶理论,具有可定义的,无限的离散线性顺序。我们证明$ t $具有连续的可计数模型。证明纯粹是一阶,但提出了$ t $的Borel完整性问题。
Let $T$ be a countable complete first-order theory with a definable, infinite, discrete linear order. We prove that $T$ has continuum-many countable models. The proof is purely first-order, but raises the question of Borel completeness of $T$.