论文标题
不交流性超级表面的黎曼几何形状
Riemannian geometry of noncommutative super surfaces
论文作者
论文摘要
在本文中,开发了不交流性超级表面的Riemannian几何形状,将[4]概括为超级情况。引入了这种非交换性超级表面上的度量和连接的概念,并表明连接是指标兼容的,并且当超级公制是对称时的旋转,从而产生相应的超级Riemann曲率。后者还满足了第一个和第二个比安奇身份的非共同超级类似物。我们还举一些例子并详细研究它们。
In this paper, a Riemannian geometry of noncommutative super surfaces is developed which generalizes [4] to the super case. The notions of metric and connections on such noncommutative super surfaces are introduced and it is shown that the connections are metric-compatible and have zero torsion when the super metric is symmetric, giving rise to the corresponding super Riemann curvature. The latter also satisfies the noncommutative super analogue of the first and second Bianchi identities. We also give some examples and study them in details.