论文标题

将VIT/MLP混合器的概括为图

A Generalization of ViT/MLP-Mixer to Graphs

论文作者

He, Xiaoxin, Hooi, Bryan, Laurent, Thomas, Perold, Adam, LeCun, Yann, Bresson, Xavier

论文摘要

图神经网络(GNN)在图表学习领域表现出巨大的潜力。标准GNNS定义了局部消息的机制,该机制通过堆叠多个图层来传播整个图形域上的信息。该范式遭受了两个主要局限性,即过度限制和较差的远程依赖性,可以使用全球注意力来解决,但会大大提高二次复杂性的计算成本。在这项工作中,我们提出了一种替代方法来克服这些结构限制,来利用计算机视觉中引入的VIT/MLP-MIXER架构。我们介绍了一个新的GNN类,称为Graph vit/MLP-Mixer,该GNN具有三个关键属性。首先,他们捕获了远程依赖关系,并减轻了远程图基准和treeneighbourmatch数据集所示的过度方面问题。其次,它们具有更高的速度和记忆效率,其复杂性线性与节点和边缘的数量线性线性,超过了相关的图形变压器和表达性GNN模型。第三,它们在图同构方面表现出很高的表现性,因为它们可以区分至少3-WL非同构图。我们在4个模拟数据集和7个实际基准测试中测试了我们的体系结构,并对所有这些基准都显示出竞争激烈的结果。源代码可用于可重复性,请访问:\ url {https://github.com/xiaoxinhe/graph-vit-mlpmixer}。

Graph Neural Networks (GNNs) have shown great potential in the field of graph representation learning. Standard GNNs define a local message-passing mechanism which propagates information over the whole graph domain by stacking multiple layers. This paradigm suffers from two major limitations, over-squashing and poor long-range dependencies, that can be solved using global attention but significantly increases the computational cost to quadratic complexity. In this work, we propose an alternative approach to overcome these structural limitations by leveraging the ViT/MLP-Mixer architectures introduced in computer vision. We introduce a new class of GNNs, called Graph ViT/MLP-Mixer, that holds three key properties. First, they capture long-range dependency and mitigate the issue of over-squashing as demonstrated on Long Range Graph Benchmark and TreeNeighbourMatch datasets. Second, they offer better speed and memory efficiency with a complexity linear to the number of nodes and edges, surpassing the related Graph Transformer and expressive GNN models. Third, they show high expressivity in terms of graph isomorphism as they can distinguish at least 3-WL non-isomorphic graphs. We test our architecture on 4 simulated datasets and 7 real-world benchmarks, and show highly competitive results on all of them. The source code is available for reproducibility at: \url{https://github.com/XiaoxinHe/Graph-ViT-MLPMixer}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源