论文标题

分组数据模型的光谱和光谱后估计器

Spectral and post-spectral estimators for grouped panel data models

论文作者

Chetverikov, Denis, Manresa, Elena

论文摘要

在本文中,我们为分组数据模型开发了光谱和光谱后估计器。在渐近学中,这两个估计器都是一致的,在渐近学上,观测值$ n $和时间段$ t $同时生长大。此外,后光谱估计器为$ \ sqrt {nt} $ - 一致且渐近地正常,平均为零,即使$ t $的越来越慢,却是分离良好的组。因此,后光谱估计器具有与Bonhomme和Manresa(2015)开发的分组固定效应估计量相当的理论属性。但是,与分组的固定效应估计量相反,我们的光谱后估计器在计算上是直接的。

In this paper, we develop spectral and post-spectral estimators for grouped panel data models. Both estimators are consistent in the asymptotics where the number of observations $N$ and the number of time periods $T$ simultaneously grow large. In addition, the post-spectral estimator is $\sqrt{NT}$-consistent and asymptotically normal with mean zero under the assumption of well-separated groups even if $T$ is growing much slower than $N$. The post-spectral estimator has, therefore, theoretical properties that are comparable to those of the grouped fixed-effect estimator developed by Bonhomme and Manresa (2015). In contrast to the grouped fixed-effect estimator, however, our post-spectral estimator is computationally straightforward.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源