论文标题

可靠避免障碍物的多传感器数据融合

Multisensor Data Fusion for Reliable Obstacle Avoidance

论文作者

Canh, Thanh Nguyen, Nguyen, Truong Son, Quach, Cong Hoang, HoangVan, Xiem, Phung, Manh Duong

论文摘要

在这项工作中,我们提出了一种新方法,该方法结合了来自多个传感器的数据,以避免可靠的障碍。传感器包括两个深度摄像头和一个布置的激光摄像头,以便它们可以捕获机器人前面的整个3D区域,并在其周围捕获2D滑梯。为了融合这些传感器的数据,我们首先使用外部相机作为参考,以结合两个深度相机的数据。然后引入投影技术,以将摄像机的3D点云数据转换为其2D对应关系。然后,基于动态窗口方法开发障碍算法。已经进行了许多实验来评估我们提出的方法。结果表明,机器人可以有效避免在不同环境中不同形状和大小的静态和动态障碍。

In this work, we propose a new approach that combines data from multiple sensors for reliable obstacle avoidance. The sensors include two depth cameras and a LiDAR arranged so that they can capture the whole 3D area in front of the robot and a 2D slide around it. To fuse the data from these sensors, we first use an external camera as a reference to combine data from two depth cameras. A projection technique is then introduced to convert the 3D point cloud data of the cameras to its 2D correspondence. An obstacle avoidance algorithm is then developed based on the dynamic window approach. A number of experiments have been conducted to evaluate our proposed approach. The results show that the robot can effectively avoid static and dynamic obstacles of different shapes and sizes in different environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源