论文标题
与等离子元原子的集体光 - 物质耦合强度的上限
Upper bounds on collective light-matter coupling strength with plasmonic meta-atoms
论文作者
论文摘要
光学激发和材料激发之间的超筋耦合是电磁相互作用的独特状态,可实现各种有趣的物理现象。超湿轻度耦合的传统方法涉及使用某些量子发射器,例如有机染料,量子井,超导性人工原子或二维电子气体的过渡。通常,到达Ultrastrong耦合域需要特殊条件,包括高真空,强磁场和极低的温度。最近的报告表明,在与等离子元原子的环境条件下,可以实现高度的轻度耦合 - 人工金属纳米结构,替代量子发射器。然而,尚未确定对此类系统施加的耦合强度的基本限制。在这里,使用哈密顿量方法,我们理论上分析了极化状态的形成,并检查了等离子元原子的许多致密组件中集体等离子体 - 光子偶联强度的上限。从球体开始,我们在等离子元原子和自由空间光子的集合之间确定标准化集体耦合强度$ g/ω_0$上的通用上限。接下来,我们检查球体金属元原子,并表明强烈的元素原子是在元原子阵列中获得集体耦合强度最高值的最佳几何形状。该结果可能对于北极星研究,量子技术和修改材料特性的领域很有价值。
Ultrastrong coupling between optical and material excitations is a distinct regime of electromagnetic interaction that enables a variety of intriguing physical phenomena. Traditional ways to ultrastrong light-matter coupling involve the use of some sorts of quantum emitters, such as organic dyes, quantum wells, superconducting artificial atoms, or transitions of two-dimensional electron gases. Often, reaching the ultrastrong coupling domain requires special conditions, including high vacuum, strong magnetic fields, and extremely low temperatures. Recent report indicate that a high degree of light-matter coupling can be attained at ambient conditions with plasmonic meta-atoms -- artificial metallic nanostructures that replace quantum emitters. Yet, the fundamental limits on the coupling strength imposed on such systems have not been identified. Here, using a Hamiltonian approach we theoretically analyze the formation of polaritonic states and examine the upper limits of the collective plasmon-photon coupling strength in a number of dense assemblies of plasmonic meta-atoms. Starting off with spheres, we identify the universal upper bounds on the normalized collective coupling strength $g/ω_0$ between ensembles of plasmonic meta-atoms and free-space photons. Next, we examine spheroidal metallic meta-atoms and show that a strongly elongated meta-atom is the optimal geometry for attaining the highest value of the collective coupling strength in the array of meta-atoms. The results could be valuable for the field of polaritonics studies, quantum technology, and modifying material properties.