论文标题
单位间隔posets的猜想证明
Bijective proof of a conjecture on unit interval posets
论文作者
论文摘要
在最近的预印本中,Matherne,Morales和Selover猜想,单位间隔Posets的两种不同表示形式与著名的Zeta Map相关,$ Q,T $ -CATALAN COMBINATORICS。 Gélinas,Segovia和Thomas使用感应证明了这一猜想。在此简短的说明中,我们使用左对齐的有色树木为Zeta图提供了相同猜想的徒证明,这首先是在抛物线塔玛里晶格的研究中提出的。
In a recent preprint, Matherne, Morales and Selover conjectured that two different representations of unit interval posets are related by the famous zeta map in $q,t$-Catalan combinatorics. This conjecture was proved recently by Gélinas, Segovia and Thomas using induction. In this short note, we provide a bijective proof of the same conjecture with a reformulation of the zeta map using left-aligned colored trees, first proposed in the study of parabolic Tamari lattices.