论文标题
偏斜支架上的光谱拓扑
Spectral topologies on skew braces
论文作者
论文摘要
使用偏斜支架A的主要理想的新定义,在我们赋予光谱拓扑的主要理想的集合中(从Grothendieck的意义上)。我们表征了规格A的不可还原闭合子集,并证明空间的每个不可还原闭合子集都有一个独特的通用点。我们提供了足够的条件,使空间成为诺瑟里亚人。我们研究了此类空间之间的连续图,最后,我们证明了规格(IDL A)是光谱空间,其中IDL A是A的所有理想集合。
Using a new definition of a prime ideal of a skew brace A, on set Spec A of prime ideals of A we endow a spectral topology (in the sense of Grothendieck). We characterize irreducible closed subsets of Spec A and prove every irreducible closed subset of the space has a unique generic point. We give a sufficient condition for the space to be Noetherian. We study continuous maps between such spaces, and finally, we prove that Spec(Idl A) is a spectral space, where Idl A is the set of all ideals of A.