论文标题

分布式量子网络的量子联合学习

Quantum Federated Learning for Distributed Quantum Networks

论文作者

Yu, Kai, Gao, Fei, Lin, Song

论文摘要

联合学习是一个可以从分布式网络中学习的框架。它试图在不共享实际数据的情况下基于虚拟融合数据构建全局模型。然而,传统的联邦学习过程遇到了两个主要挑战:高计算成本和消息传输安全性。为了应对这些挑战,我们通过利用量子力学的有趣特征来提出一个用于分布式量子网络的量子联合学习。首先,我们提供两种将数据信息提取到量子状态的方法。它可以应对不同的数据信息的采集频率。接下来,提供了一种量子梯度下降算法,以帮助分布式量子网络中的客户培训本地模型。换句话说,该算法为客户提供了一种并行估计本地模型梯度的机制。与经典的对应物相比,所提出的算法在数据维度中以数据集量表和二次加速度达到指数加速度。并且,设计了一种量子安全的多方计算协议,该协议利用了中国剩余定理。它可以避免在大量操作过程中可能出现的错误和溢出问题。安全分析表明,此量子协议可以抵抗常见的外部和内部攻击。最后,为了证明所提出的框架的有效性,我们将其用于联合线性回归模型的列车,并在Qiskit量子计算框架上执行基本计算步骤。

Federated learning is a framework that can learn from distributed networks. It attempts to build a global model based on virtual fusion data without sharing the actual data. Nevertheless, the traditional federated learning process encounters two main challenges: high computational cost and message transmission security. To address these challenges, we propose a quantum federated learning for distributed quantum networks by utilizing interesting characteristics of quantum mechanics. First, we give two methods to extract the data information to the quantum state. It can cope with different acquisition frequencies of data information. Next, a quantum gradient descent algorithm is provided to help clients in the distributed quantum networks to train local models. In other words, the algorithm gives the clients a mechanism to estimate the gradient of the local model in parallel. Compared with the classical counterpart, the proposed algorithm achieves exponential acceleration in dataset scale and quadratic speedup in data dimensionality. And, a quantum secure multi-party computation protocol is designed, which utilizes the Chinese residual theorem. It could avoid errors and overflow problems that may occur in the process of large number operation. Security analysis shows that this quantum protocol can resist common external and internal attacks. Finally, to demonstrate the effectiveness of the proposed framework, we use it to the train federated linear regression model and execute essential computation steps on the Qiskit quantum computing framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源