论文标题
低$ c $差异均匀性的双变量功能
Bivariate functions with low $c$-differential uniformity
论文作者
论文摘要
从$ \ Mathbb {f} _ {q}^2 $中的元素的乘法开始,这与$ \ mathbb {f} _ {q^2} $一致,其中$ q $是$ c $ - c $ - diverential souription functions b的质量功率$ f(x,y)=(g(x,y),h(x,y))$。通过仔细选择功能$ g(x,y)$和$ h(x,y)$,我们介绍了具有低$ c $ differential均匀性的几个双变量功能的结构。我们的构造可以产生许多p $ c $ n和ap $ c $ n功能。
Starting with the multiplication of elements in $\mathbb{F}_{q}^2$ which is consistent with that over $\mathbb{F}_{q^2}$, where $q$ is a prime power, via some identification of the two environments, we investigate the $c$-differential uniformity for bivariate functions $F(x,y)=(G(x,y),H(x,y))$. By carefully choosing the functions $G(x,y)$ and $H(x,y)$, we present several constructions of bivariate functions with low $c$-differential uniformity. Many P$c$N and AP$c$N functions can be produced from our constructions.