论文标题

关节频谱在投影上收缩地图

Joint spectrum shrinking maps on projections

论文作者

Qian, Wenhua, Xiao, Dandan, Tao, Tanghong, Wu, Wenming, Yi, Xin

论文摘要

令$ \ MATHCAL H $为有限的尺寸复杂的Hilbert Space,其尺寸$ n \ ge 3 $和$ \ MATHCAL P(\ MATHCAL H)$ $ \ MATHCAL H $上的一组预测。令$φ:\ MATHCAL P(\ MATHCAL H)\ to \ MATHCAL P(\ MATHCAL H)$为溢流地图。我们表明,$φ$缩小了当且仅当其为任何两个预测保存的关节频谱时,都会收缩任何两个预测的联合频谱,因此以特定方式在$ \ mathbb c $上的环形自动形态引起。此外,对于任意的$ k \ ge 3 $,$φ$缩小了任何$ k $投影的关节频谱,并且仅当它是由统一或反军事引起的。假设$ ϕ $是格拉曼(Grassmann)排名一号预测空间上的溢流地图。我们表明,$ ϕ $是保留任何$ n $排名一个预测的关节频谱,并且只有将其扩展到$ \ Mathcal p(\ Mathcal {h})$上的冲销映射,这是任何两个项目的频谱。此外,对于任何$ k> n $,$ ϕ $都是关节频谱在任何$ k $等级的预测中都会缩小,并且只有当它是由单一或一个反军事引起的。

Let $\mathcal H$ be a finite dimensional complex Hilbert space with dimension $n \ge 3$ and $\mathcal P(\mathcal H)$ the set of projections on $\mathcal H$. Let $φ: \mathcal P(\mathcal H) \to \mathcal P(\mathcal H)$ be a surjective map. We show that $φ$ shrinks the joint spectrum of any two projections if and only if it is joint spectrum preserving for any two projections and thus is induced by a ring automorphism on $\mathbb C$ in a particular way. In addition, for an arbitrary $k \ge 3$, $φ$ shrinks the joint spectrum of any $k$ projections if and only if it is induced by a unitary or an anti-unitary. Assume that $ϕ$ is a surjective map on the Grassmann space of rank one projections. We show that $ϕ$ is joint spectrum preserving for any $n$ rank one projections if and only if it can be extended to a surjective map on $\mathcal P(\mathcal{H})$ which is spectrum preserving for any two projections. Moreover, for any $k >n$, $ϕ$ is joint spectrum shrinking for any $k$ rank one projections if and only if it is induced by a unitary or an anti-unitary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源