论文标题
Gromov-Wasserstein距离:熵正则化,双重性和样本复杂性
Gromov-Wasserstein Distances: Entropic Regularization, Duality, and Sample Complexity
论文作者
论文摘要
植根于最佳传输理论(OT)理论的Gromov-Wasserstein(GW)距离量化了度量措施空间之间的差异性,并为对齐异质数据集提供了一个框架。尽管已广泛研究了GW问题的计算方面,但有关经验收敛率的双重性理论和基本统计问题仍然晦涩难懂。这项工作缩小了不同维度$ d_x $和$ d_y $的欧几里得空间上的二次GW距离的这些空白。我们同时对待标准和熵正则化的GW距离,并得出双重形式,这些形式分别以众所周知的OT和熵(EOT)问题来表示它们。这使我们能够基于对双重电位和经验过程理论的规律性分析来采用统计ot的证明技术,并使用我们建立了第一个GW经验收敛速率。派生的两个样本速率为$ n^{ - 2/\ max \ {\ min \ {d_x,d_y \},4 \}} $(当$ \ min \ min \ {d_x,d_y \} = 4 $时,标准GW和$ n^{d_y \} = 4 $时,最多可用于log fivers for标准GW和$ n^{ - $ n^{ - 1/1/2} $ g。 EGW的参数速率显然是最佳的,而对于标准GW,我们提供匹配的下限,从而确立了派生速率的清晰度。我们还研究了EGW在熵正则化参数中的稳定性,并证明了成本和最佳耦合的近似和连续性结果。最后,二元性被杠杆化以使$ n $点上均匀分布之间的一维GW距离的开放问题揭示了新的启示,从而阐明了为什么身份和反身份排列可能不是最佳的。我们的结果是基于发现的双重配方的全面统计理论以及GW距离的计算进步的第一步。
The Gromov-Wasserstein (GW) distance, rooted in optimal transport (OT) theory, quantifies dissimilarity between metric measure spaces and provides a framework for aligning heterogeneous datasets. While computational aspects of the GW problem have been widely studied, a duality theory and fundamental statistical questions concerning empirical convergence rates remained obscure. This work closes these gaps for the quadratic GW distance over Euclidean spaces of different dimensions $d_x$ and $d_y$. We treat both the standard and the entropically regularized GW distance, and derive dual forms that represent them in terms of the well-understood OT and entropic OT (EOT) problems, respectively. This enables employing proof techniques from statistical OT based on regularity analysis of dual potentials and empirical process theory, using which we establish the first GW empirical convergence rates. The derived two-sample rates are $n^{-2/\max\{\min\{d_x,d_y\},4\}}$ (up to a log factor when $\min\{d_x,d_y\}=4$) for standard GW and $n^{-1/2}$ for EGW, which matches the corresponding rates for standard and entropic OT. The parametric rate for EGW is evidently optimal, while for standard GW we provide matching lower bounds, which establish sharpness of the derived rates. We also study stability of EGW in the entropic regularization parameter and prove approximation and continuity results for the cost and optimal couplings. Lastly, the duality is leveraged to shed new light on the open problem of the one-dimensional GW distance between uniform distributions on $n$ points, illuminating why the identity and anti-identity permutations may not be optimal. Our results serve as a first step towards a comprehensive statistical theory as well as computational advancements for GW distances, based on the discovered dual formulations.