论文标题

科学中的自动化小工具发现

Automated Gadget Discovery in Science

论文作者

Trenkwalder, Lea M., Incera, Andrea López, Nautrup, Hendrik Poulsen, Flamini, Fulvio, Briegel, Hans J.

论文摘要

近年来,强化学习(RL)在其在科学上的应用和一般科学发现的过程中变得越来越成功。但是,尽管RL算法学会了解决日益复杂的问题,但解释其提供的解决方案变得越来越具有挑战性。在这项工作中,我们通过基于序列挖掘和聚类的事后分析来洞悉RL代理商的学习行为。具体而言,代理用于解决给定任务的频繁和紧凑的子例程被用作小工具,然后由各种指标分组。该小工具发现的过程在三个阶段开发:首先,我们使用RL代理来生成数据,然后,我们采用采矿算法来提取小工具,最后,所获得的小工具由基于密度的群集聚类算法分组。我们通过将其应用于两个量子启发的RL环境来演示我们的方法。首先,我们考虑了模拟的量子光学实验,用于设计高维多分分纠缠状态,该算法找到与现代干涉仪设置相对应的小工具。其次,我们考虑了基于电路的量子计算环境,该算法在其中发现了用于量子信息处理的各种小工具,例如量子传送。这种分析学家的政策的方法是代理和环境不可知论,可以对任何代理商的政策产生有趣的见解。

In recent years, reinforcement learning (RL) has become increasingly successful in its application to science and the process of scientific discovery in general. However, while RL algorithms learn to solve increasingly complex problems, interpreting the solutions they provide becomes ever more challenging. In this work, we gain insights into an RL agent's learned behavior through a post-hoc analysis based on sequence mining and clustering. Specifically, frequent and compact subroutines, used by the agent to solve a given task, are distilled as gadgets and then grouped by various metrics. This process of gadget discovery develops in three stages: First, we use an RL agent to generate data, then, we employ a mining algorithm to extract gadgets and finally, the obtained gadgets are grouped by a density-based clustering algorithm. We demonstrate our method by applying it to two quantum-inspired RL environments. First, we consider simulated quantum optics experiments for the design of high-dimensional multipartite entangled states where the algorithm finds gadgets that correspond to modern interferometer setups. Second, we consider a circuit-based quantum computing environment where the algorithm discovers various gadgets for quantum information processing, such as quantum teleportation. This approach for analyzing the policy of a learned agent is agent and environment agnostic and can yield interesting insights into any agent's policy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源