论文标题
LMFloss:医疗图像分类不平衡的混合损失
LMFLOSS: A Hybrid Loss For Imbalanced Medical Image Classification
论文作者
论文摘要
随着数字技术的进步,医学图像的分类已成为基于图像的临床决策支持系统的关键步骤。自动医学图像分类代表了一个关键领域,其中AI的使用具有产生重大社会影响的潜力。但是,一些挑战是发展实践和有效解决方案的障碍。这些挑战之一是大多数医学成像数据集中普遍的类不平衡问题。结果,在这种情况下,现有的AI技术,尤其是基于深度学习的方法,通常表现不佳。在这项研究中,我们提出了一个名为“大余量焦点(LMF)损失”的新型框架,以减轻医学成像中的类不平衡问题。 LMF损失代表了两个由两个超参数优化的两个损失函数的线性组合。该框架通过实施少数族裔类的更宽边缘,同时强调数据集中发现的具有挑战性的样本,从而利用了这两种损失函数的独特特征。我们对三个神经网络架构和四个医学成像数据集进行了严格的实验。我们提供的经验证据表明,我们提出的框架始终优于其他基线方法,显示宏F1分数的2%-9%。通过对F1分数的班级分析,我们还展示了所提出的框架如何显着改善少数族裔的绩效。我们的实验结果表明,我们提出的框架可以在不同的架构和数据集中持续稳定地表现。总体而言,我们的研究表明了一种简单有效的方法来解决医学成像数据集中的类不平衡问题。我们希望我们的工作能够激发新的研究对更普遍的医学图像分类方法。
With advances in digital technology, the classification of medical images has become a crucial step for image-based clinical decision support systems. Automatic medical image classification represents a pivotal domain where the use of AI holds the potential to create a significant social impact. However, several challenges act as obstacles to the development of practical and effective solutions. One of these challenges is the prevalent class imbalance problem in most medical imaging datasets. As a result, existing AI techniques, particularly deep-learning-based methodologies, often underperform in such scenarios. In this study, we propose a novel framework called Large Margin aware Focal (LMF) loss to mitigate the class imbalance problem in medical imaging. The LMF loss represents a linear combination of two loss functions optimized by two hyperparameters. This framework harnesses the distinct characteristics of both loss functions by enforcing wider margins for minority classes while simultaneously emphasizing challenging samples found in the datasets. We perform rigorous experiments on three neural network architectures and with four medical imaging datasets. We provide empirical evidence that our proposed framework consistently outperforms other baseline methods, showing an improvement of 2%-9% in macro-f1 scores. Through class-wise analysis of f1 scores, we also demonstrate how the proposed framework can significantly improve performance for minority classes. The results of our experiments show that our proposed framework can perform consistently well across different architectures and datasets. Overall, our study demonstrates a simple and effective approach to addressing the class imbalance problem in medical imaging datasets. We hope our work will inspire new research toward a more generalized approach to medical image classification.