论文标题

通过深度学习和模态分解在两相同心射流中进行预测

Forecasting through deep learning and modal decomposition in two-phase concentric jets

论文作者

Mata, León, Abadía-Heredia, Rodrigo, Lopez-Martin, Manuel, Pérez, José M., Clainche, Soledad Le

论文摘要

这项工作旨在改善燃油室喷射器在涡轮扇形发动机中的性能,从而提高性能和污染物的降低。这需要开发模型,以实时预测和改善燃料/空气混合物。但是,迄今为止所做的工作涉及使用实验数据(复杂的测量)或完整问题的数值分辨率(计算效果)。后者涉及分解部分微分方程(PDE)系统。这些问题很难开发实时预测工具。因此,在这项工作中,我们建议在存在切线不连续性的情况下使用机器学习以及(互补的)单相数值模拟,以在两相流中估算混合过程。在这意味着我们研究了两个提出的神经网络(NN)模型作为PDE替代模型的应用。鉴于一些初步信息,NN预测了未来动态。我们在训练阶段和推理阶段都显示了这些模型所需的计算成本低。我们还通过一种称为高阶动态模式分解(HODMD)的模态分解技术来降低数据复杂性,从而改善NN训练,该技术可以识别流动动力学内部的主要结构并仅使用这些主要结构重建原始流。这种重建具有与原始流相同数量的样本和空间维度,但具有不太复杂的动力学并保留其主要特征。这项工作的核心思想是测试深度学习模型对复杂流体动力学问题预测的适用性的限制。通过使用相同的NN体系结构预测四个不同的两相流的未来动力学,可以证明模型的概括能力。

This work aims to improve fuel chamber injectors' performance in turbofan engines, thus implying improved performance and reduction of pollutants. This requires the development of models that allow real-time prediction and improvement of the fuel/air mixture. However, the work carried out to date involves using experimental data (complicated to measure) or the numerical resolution of the complete problem (computationally prohibitive). The latter involves the resolution of a system of partial differential equations (PDE). These problems make difficult to develop a real-time prediction tool. Therefore, in this work, we propose using machine learning in conjunction with (complementarily cheaper) single-phase flow numerical simulations in the presence of tangential discontinuities to estimate the mixing process in two-phase flows. In this meaning we study the application of two proposed neural network (NN) models as PDE surrogate models. Where the future dynamics is predicted by the NN, given some preliminary information. We show the low computational cost required by these models, both in their training and inference phases. We also show how NN training can be improved by reducing data complexity through a modal decomposition technique called higher order dynamic mode decomposition (HODMD), which identifies the main structures inside flow dynamics and reconstructs the original flow using only these main structures. This reconstruction has the same number of samples and spatial dimension as the original flow, but with a less complex dynamics and preserving its main features. The core idea of this work is to test the limits of applicability of deep learning models to data forecasting in complex fluid dynamics problems. Generalization capabilities of the models are demonstrated by using the same NN architectures to forecast the future dynamics of four different two-phase flows.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源