论文标题

通过树结构学习改善不确定性量化网络的不确定性量化

Improving Uncertainty Quantification of Variance Networks by Tree-Structured Learning

论文作者

Ma, Wenxuan, Yan, Xing, Zhang, Kun

论文摘要

为了改善方差网络的不确定性量化,我们提出了一种新型树结构的局部神经网络模型,该模型将特征空间分为基于不确定性异质性的多个区域。一棵树是在提供训练数据的基础上构建的,培训数据的叶子节点代表了不同区域的区域特异性神经网络,以预测量化不确定性的均值和差异。提出的不确定性分解神经回归树(USNRT)采用了新颖的分裂标准。在每个节点上,首先对整个数据进行了神经网络的训练,并进行了残差的统计测试以找到最佳的分裂,对应于两个子区域,它们之间具有最重要的不确定性异质性。 USNRT在计算上很友好,因为很少有叶子节点足够,并且修剪不需要。此外,可以轻松地构建合奏版本,以估计包括待遇和认知的总体不确定性。在广泛的UCI数据集上,USNRT或其集合表现出卓越的性能,与一些最近的流行方法相比,用于量化不确定性的一些流行方法。通过全面的可视化和分析,我们发现了USNRT如何工作并表现出其优点,揭示了许多数据集中确实存在不确定性异质性,并且可以通过USNRT学习。

To improve the uncertainty quantification of variance networks, we propose a novel tree-structured local neural network model that partitions the feature space into multiple regions based on uncertainty heterogeneity. A tree is built upon giving the training data, whose leaf nodes represent different regions where region-specific neural networks are trained to predict both the mean and the variance for quantifying uncertainty. The proposed Uncertainty-Splitting Neural Regression Tree (USNRT) employs novel splitting criteria. At each node, a neural network is trained on the full data first, and a statistical test for the residuals is conducted to find the best split, corresponding to the two sub-regions with the most significant uncertainty heterogeneity between them. USNRT is computationally friendly because very few leaf nodes are sufficient and pruning is unnecessary. Furthermore, an ensemble version can be easily constructed to estimate the total uncertainty including the aleatory and epistemic. On extensive UCI datasets, USNRT or its ensemble shows superior performance compared to some recent popular methods for quantifying uncertainty with variances. Through comprehensive visualization and analysis, we uncover how USNRT works and show its merits, revealing that uncertainty heterogeneity does exist in many datasets and can be learned by USNRT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源