论文标题

将随机参数化还原模型与机器学习结合在一起,以进行数据同化和不确定性定量与部分观测

Combining Stochastic Parameterized Reduced-Order Models with Machine Learning for Data Assimilation and Uncertainty Quantification with Partial Observations

论文作者

Mou, Changhong, Smith, Leslie M., Chen, Nan

论文摘要

为具有部分观察的复杂动力学系统开发了混合数据同化算法。该方法首先将光谱分解应用于整个时空场,然后创建一个机器学习模型,该模型在每个光谱模式的观察到和未观察到的状态变量的系数之间构建非线性图。廉价的低阶非线性随机参数化扩展Kalman滤波器(SPEKF)模型被用作集成Kalman滤波器中的预测模型,以处理与观察到的变量相关的每个模式。然后将最终的集合成员送入机器学习模型中,以创建相应的未观察变量的合奏。除了整体扩散外,还将机器学习引起的非线性图中的训练残留物进一步纳入了逐步定量后不确定性的状态估计中。杂化数据同化算法应用于沉淀的准地藻(PQG)模型,该模型包括水蒸气,云和降雨的影响,而不是经典的两级QG模型。 PQG方程中复杂的非线性阻止了传统方法构建简单,准确的还原预测模型。相比之下,SPEKF模型擅长恢复间歇性观察到的状态,并且机器学习模型有效地估计了混乱的未观察到的信号。在适度的云部分下,使用校准的SPEKF和机器学习模型,当应用于其他几乎清晰的天空或相对较重的降雨时,由此产生的混合数据同化仍然是合理准确的,这意味着算法的鲁棒性用于伸出。

A hybrid data assimilation algorithm is developed for complex dynamical systems with partial observations. The method starts with applying a spectral decomposition to the entire spatiotemporal fields, followed by creating a machine learning model that builds a nonlinear map between the coefficients of observed and unobserved state variables for each spectral mode. A cheap low-order nonlinear stochastic parameterized extended Kalman filter (SPEKF) model is employed as the forecast model in the ensemble Kalman filter to deal with each mode associated with the observed variables. The resulting ensemble members are then fed into the machine learning model to create an ensemble of the corresponding unobserved variables. In addition to the ensemble spread, the training residual in the machine learning-induced nonlinear map is further incorporated into the state estimation that advances the quantification of the posterior uncertainty. The hybrid data assimilation algorithm is applied to a precipitating quasi-geostrophic (PQG) model, which includes the effects of water vapor, clouds, and rainfall beyond the classical two-level QG model. The complicated nonlinearities in the PQG equations prevent traditional methods from building simple and accurate reduced-order forecast models. In contrast, the SPEKF model is skillful in recovering the intermittent observed states, and the machine learning model effectively estimates the chaotic unobserved signals. Utilizing the calibrated SPEKF and machine learning models under a moderate cloud fraction, the resulting hybrid data assimilation remains reasonably accurate when applied to other geophysical scenarios with nearly clear skies or relatively heavy rainfall, implying the robustness of the algorithm for extrapolation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源