论文标题
群集网络上的模型:意见动态的模型
Ising model on clustered networks: A model for opinion dynamics
论文作者
论文摘要
我们研究了具有非平凡社区结构的网络上的意见动力学,假设个人可以通过[0,1] $中的外部影响与强度$ h \以及与网络中的其他人进行相互作用而更新其二进制意见。为了建模这种动力学,我们考虑具有簇结构的有限网络家族的外部磁场的Ising模型。假设每个社区内部的相互作用具有单位强度,我们假设[-1,1] $中的标量$ε\描述了跨不同社区的相互作用的强度,这使得社区之间的较弱但可能是拮抗作用。我们对通过反向温度$β$参数的Glauber型动力学描述的该系统的随机演变感兴趣。我们专注于低温制度$β\ rightarrow \ infty $,其中均匀的意见模式占上风,因此,网络需要很长时间才能完全改变意见。我们研究了该意见动力学模型的不同亚稳态和稳定状态,以及它们如何依赖于参数$ε$和$ h $的值。更确切地说,使用统计物理学的工具,我们在亚稳态(或稳定)状态和(其他)稳定状态之间的第一次击球时间中得出了严格的概率,期望和法律的严格估计,并在马尔可夫链的混合时间和光谱差距上紧密地描述了网络动力学。最后,我们为动力学的关键配置(即,沿着感兴趣的过渡都高概率访问的动力学的关键配置提供了完整的表征。
We study opinion dynamics on networks with a nontrivial community structure, assuming individuals can update their binary opinion as the result of the interactions with an external influence with strength $h\in [0,1]$ and with other individuals in the network. To model such dynamics, we consider the Ising model with an external magnetic field on a family of finite networks with a clustered structure. Assuming a unit strength for the interactions inside each community, we assume that the strength of interaction across different communities is described by a scalar $ε\in [-1,1]$, which allows a weaker but possibly antagonistic effect between communities. We are interested in the stochastic evolution of this system described by a Glauber-type dynamics parameterized by the inverse temperature $β$. We focus on the low-temperature regime $β\rightarrow\infty$, in which homogeneous opinion patterns prevail and, as such, it takes the network a long time to fully change opinion. We investigate the different metastable and stable states of this opinion dynamics model and how they depend on the values of the parameters $ε$ and $h$. More precisely, using tools from statistical physics, we derive rigorous estimates in probability, expectation, and law for the first hitting time between metastable (or stable) states and (other) stable states, together with tight bounds on the mixing time and spectral gap of the Markov chain describing the network dynamics. Lastly, we provide a full characterization of the critical configurations for the dynamics, i.e., those which are visited with high probability along the transitions of interest.