论文标题

扭曲形式的交叉点:新理论和双副本

Intersections of Twisted Forms: New Theories and Double Copies

论文作者

Mazloumi, Pouria, Stieberger, Stephan

论文摘要

颗粒的树级散射幅度在带有穿刺的Riemann球体的模量空间上的一对扭曲差分形式的交点上具有几何描述。我们自定义了一个扭曲的差分形式的目录,其中包含已知和新的差异形式。通过配对此列表中的元素可以提供各种理论的交点数,以计算其散射幅度。后者通过他们的CHY描述很熟悉,但另一些是未知的。同样,某些配对产生了旋转两个理论的各种已知和新颖的双拷贝结构。这样,我们找到了许多理论的双复制构造,包括较高的衍生性重力,(部分无质量)双光重力和一些更奇特的理论。此外,我们提出了交叉理论中振幅关系的推导。

Tree-level scattering amplitudes of particles have a geometrical description in terms of intersection numbers of pairs of twisted differential forms on the moduli space of Riemann spheres with punctures. We customize a catalog of twisted differential forms containing both already known and new differential forms. By pairing elements from this list intersection numbers of various theories can be furnished to compute their scattering amplitudes. Some of the latter are familiar through their CHY description, but others are unknown. Likewise, certain pairings give rise to various known and novel double-copy constructions of spin-two theories. This way we find double copy constructions for many theories, including higher derivative gravity, (partial massless) bimetric gravity and some more exotic theories. Furthermore, we present a derivation of amplitude relations in intersection theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源