论文标题

学习受舞台风险控制的最佳动态治疗方案

Learning Optimal Dynamic Treatment Regimens Subject to Stagewise Risk Controls

论文作者

Liu, Mochuan, Wang, Yuanjia, Fu, Haoda, Zeng, Donglin

论文摘要

动态治疗方案(DTRS)旨在调整个性化的顺序治疗规则,通过容纳患者在决策中的异质性,从而最大程度地提高累积有益结果。对于包括2型糖尿病(T2D)在内的许多慢性疾病,治疗通常是多方面的,因为具有较高预期奖励的积极治疗也可能会提高急性不良事件的风险。在本文中,我们提出了一个新的加权学习框架,即利益风险的动态治疗方案(BR-DTRS),以解决利益风险的权衡。新的框架依靠向后的学习程序来限制在每个治疗阶段的治疗规则的诱发风险不超过预先指定的风险限制。在计算上,估计的处理规则通过修改的平滑约束解决了加权支持向量机问题。从理论上讲,我们表明提出的DTR是Fisher的一致性,并且我们进一步获得了价值和风险功能的收敛速率。最后,通过广泛的仿真研究和对T2D患者的真实研究的应用来证明该方法的性能。

Dynamic treatment regimens (DTRs) aim at tailoring individualized sequential treatment rules that maximize cumulative beneficial outcomes by accommodating patients' heterogeneity in decision-making. For many chronic diseases including type 2 diabetes mellitus (T2D), treatments are usually multifaceted in the sense that aggressive treatments with a higher expected reward are also likely to elevate the risk of acute adverse events. In this paper, we propose a new weighted learning framework, namely benefit-risk dynamic treatment regimens (BR-DTRs), to address the benefit-risk trade-off. The new framework relies on a backward learning procedure by restricting the induced risk of the treatment rule to be no larger than a pre-specified risk constraint at each treatment stage. Computationally, the estimated treatment rule solves a weighted support vector machine problem with a modified smooth constraint. Theoretically, we show that the proposed DTRs are Fisher consistent, and we further obtain the convergence rates for both the value and risk functions. Finally, the performance of the proposed method is demonstrated via extensive simulation studies and application to a real study for T2D patients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源