论文标题

在超导量子处理器上以均方根资源的形式设定整数

Factoring integers with sublinear resources on a superconducting quantum processor

论文作者

Yan, Bao, Tan, Ziqi, Wei, Shijie, Jiang, Haocong, Wang, Weilong, Wang, Hong, Luo, Lan, Duan, Qianheng, Liu, Yiting, Shi, Wenhao, Fei, Yangyang, Meng, Xiangdong, Han, Yu, Shan, Zheng, Chen, Jiachen, Zhu, Xuhao, Zhang, Chuanyu, Jin, Feitong, Li, Hekang, Song, Chao, Wang, Zhen, Ma, Zhi, Wang, H., Long, Gui-Lu

论文摘要

Shor的算法已经严重挑战了基于公共密钥密码系统的信息安全性。但是,为了打破广泛使用的RSA-2048计划,需要数百万个物理量子位,这远远超出了当前的技术能力。在这里,我们通过将经典的晶格还原与量子近似优化算法(QAOA)相结合,报告了一种通用量子算法,用于整数分解。所需的量楼数为O(logn/loglog n),它在整数$ n $的位,使其成为迄今为止最频繁的分解算法。我们通过将多达48位的整数分解为10位超导量子位,这是量子设备上最大的整数。我们估计,使用我们的算法挑战RSA-2048的量子电路,具有372个物理Qubits和数千个深度是必要的。我们的研究表明,在加快当前嘈杂量子计算机的应用方面表现出了巨大的希望,并为考虑具有现实加密意义的大整数的方式铺平了道路。

Shor's algorithm has seriously challenged information security based on public key cryptosystems. However, to break the widely used RSA-2048 scheme, one needs millions of physical qubits, which is far beyond current technical capabilities. Here, we report a universal quantum algorithm for integer factorization by combining the classical lattice reduction with a quantum approximate optimization algorithm (QAOA). The number of qubits required is O(logN/loglog N), which is sublinear in the bit length of the integer $N$, making it the most qubit-saving factorization algorithm to date. We demonstrate the algorithm experimentally by factoring integers up to 48 bits with 10 superconducting qubits, the largest integer factored on a quantum device. We estimate that a quantum circuit with 372 physical qubits and a depth of thousands is necessary to challenge RSA-2048 using our algorithm. Our study shows great promise in expediting the application of current noisy quantum computers, and paves the way to factor large integers of realistic cryptographic significance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源