论文标题

通过半监督学习和粗到精细的意图检测发现客户服务对话系统

Discovering Customer-Service Dialog System with Semi-Supervised Learning and Coarse-to-Fine Intent Detection

论文作者

Yang, Zhitong, Ma, Xing, Liu, Anqi, Zhang, Zheyu

论文摘要

以任务为导向的对话框(TOD)旨在通过多转交谈来帮助用户实现特定目标。最近,基于大型预训练模型获得了良好的结果。但是,标记的数据稀缺性会阻碍TOD系统的有效发展。在这项工作中,我们根据教师/学生范式构建了一个弱监督的数据集,该数据集利用了大量未标记的对话。此外,我们构建了一个模块化对话系统,并集成了粗到1的粒度分类,以进行用户意图检测。实验表明,我们的方法可以以更高的成功率达到对话目标,并产生更连贯的响应。

Task-oriented dialog(TOD) aims to assist users in achieving specific goals through multi-turn conversation. Recently, good results have been obtained based on large pre-trained models. However, the labeled-data scarcity hinders the efficient development of TOD systems at scale. In this work, we constructed a weakly supervised dataset based on a teacher/student paradigm that leverages a large collection of unlabelled dialogues. Furthermore, we built a modular dialogue system and integrated coarse-to-fine grained classification for user intent detection. Experiments show that our method can reach the dialog goal with a higher success rate and generate more coherent responses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源