论文标题
用于学习连续时间动态节点表示的分段速度模型
Piecewise-Velocity Model for Learning Continuous-time Dynamic Node Representations
论文作者
论文摘要
在许多领域,网络已成为必不可少的和无处不在的结构,以模拟不同实体之间的相互作用,例如社交网络中的友谊或生物图中的蛋白质相互作用。一个主要的挑战是了解这些系统的结构和动态。尽管网络随时间发展,但大多数现有的图表表示方法仅针对静态网络。尽管已经开发了用于建模动态网络的方法,但缺乏有效的连续时间动态图表学习方法,可以在低维度中提供准确的网络表征和可视化,同时明确考虑了同质和传递性等突出网络特征。在本文中,我们提出了用于表示连续时间动态网络的分段速度模型(PIVEM)。它学习了动态嵌入,其中通过基于分段恒定节点特异性速度的潜在距离模型进行分段线性插值来近似节点的时间演变。该模型允许对相关的泊松过程可能性的分析表达式具有可扩展的推断事件数量。我们进一步施加了一个可扩展的Kronecker结构化的高斯过程,然后在动力学核算社区结构,时间平滑度和解开(不相关的)潜在嵌入尺寸方面最佳地学习以表征网络动力学。我们表明,PIVEM可以成功地表示超低二维空间中的网络结构和动力学。它在下游任务(例如链接预测)中的表现优于相关的最新方法。总而言之,PIVEM启用了易于解释的动态网络可视化和特征,可以进一步增强我们对时间不断发展网络的内在动态的理解。
Networks have become indispensable and ubiquitous structures in many fields to model the interactions among different entities, such as friendship in social networks or protein interactions in biological graphs. A major challenge is to understand the structure and dynamics of these systems. Although networks evolve through time, most existing graph representation learning methods target only static networks. Whereas approaches have been developed for the modeling of dynamic networks, there is a lack of efficient continuous time dynamic graph representation learning methods that can provide accurate network characterization and visualization in low dimensions while explicitly accounting for prominent network characteristics such as homophily and transitivity. In this paper, we propose the Piecewise-Velocity Model (PiVeM) for the representation of continuous-time dynamic networks. It learns dynamic embeddings in which the temporal evolution of nodes is approximated by piecewise linear interpolations based on a latent distance model with piecewise constant node-specific velocities. The model allows for analytically tractable expressions of the associated Poisson process likelihood with scalable inference invariant to the number of events. We further impose a scalable Kronecker structured Gaussian Process prior to the dynamics accounting for community structure, temporal smoothness, and disentangled (uncorrelated) latent embedding dimensions optimally learned to characterize the network dynamics. We show that PiVeM can successfully represent network structure and dynamics in ultra-low two-dimensional spaces. It outperforms relevant state-of-art methods in downstream tasks such as link prediction. In summary, PiVeM enables easily interpretable dynamic network visualizations and characterizations that can further improve our understanding of the intrinsic dynamics of time-evolving networks.