论文标题
$ n $ - 交叉数字的严格不平等
Strict Inequalities for the $n$-crossing Number
论文作者
论文摘要
2013年,亚当斯(Adams)引入了$ n $ n $ ossing $ k $的划线,用$ c_n(k)$表示。以前已经建立了$ 2 $ - ,$ 3 $ - ,$ 4 $ - ,$ 4 $ - ,$ 4 $ - ,$ 4 $ - ,$ 4 $ - ,$ 4 $ - ,$ 3 $ - ,$ 3 $ - ,$ 3 $ - ,交叉数字之间的不平等现象。我们证明$ C_9(k)\ leq C_3(k)-2 $,对于所有不是微不足道,三叶草或人物八个结的结$ k $。我们表明这种不平等是最佳的,并且获得了以前未知的$ C_9(k)$的值。我们概括了这种不等式,以证明$ c_ {13}(k)<c_ {5}(k)$对于某些类别类别。
In 2013, Adams introduced the $n$-crossing number of a knot $K$, denoted by $c_n(K)$. Inequalities between the $2$-, $3$-, $4$-, and $5$-crossing numbers have been previously established. We prove $c_9(K)\leq c_3(K)-2$ for all knots $K$ that are not the trivial, trefoil, or figure-eight knot. We show this inequality is optimal and obtain previously unknown values of $c_9(K)$. We generalize this inequality to prove that $c_{13}(K) < c_{5}(K)$ for a certain set of classes of knots.