论文标题

部分可观测时空混沌系统的无模型预测

Exact solutions and conservation lawsof a one-dimensional PDE model for a blood vessel

论文作者

Anco, Stephen C., Marquez, Almudena P., Garrido, Tamara M., Gandarias, Maria L.

论文摘要

通过对称分析研究了单个血管中广泛使用的1D血流模型的两个方面,其中模型中的变量是血压和血管的横截面面积。作为一个主要结果,所有行动波解决方案均通过模型的显式正交发现。讨论了这些解决方案的特征,行为和边界条件。感兴趣的解决方案包括冲击波和压力和血流的锋利波脉冲。另一个主要结果是为无污水提供了三个新的保护法。与1D可压缩流体流中的众所周知的保护定律相比,它们描述了广义动量和广义轴向和体积能。对于粘性流,这些保护定律将被保存平衡方程所取代,该方程包含与模型中摩擦系数成正比的耗散术语。

Two aspects of a widely used 1D model of blood flow in a single blood vessel are studied by symmetry analysis, where the variables in the model are the blood pressure and the cross-section area of the blood vessel. As one main result, all travelling wave solutions are found by explicit quadrature of the model. The features, behaviour, and boundary conditions for these solutions are discussed. Solutions of interest include shock waves and sharp wave-front pulses for the pressure and the blood flow. Another main result is that three new conservation laws are derived for inviscid flows. Compared to the well-known conservation laws in 1D compressible fluid flow, they describe generalized momentum and generalized axial and volumetric energies. For viscous flows, these conservation laws get replaced by conservation balance equations which contain a dissipative term proportional to the friction coefficient in the model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源