论文标题
CR2GE2TE6的尾磁电特性通过工程增值Cr自我隔离:铁磁半米
Tailing Magnetoelectric properties of Cr2Ge2Te6 by Engineering Covalently bonded Cr Self-intercalation: Ferromagnetic Half-metal
论文作者
论文摘要
二维内在铁磁半米(HM)对于旋转三位型很重要。操纵范德华磁性材料的层间磁耦合是控制磁电特性的重要方法,这对于旋转型特别有用。在这里,基于Crgete3(CGT)双层的系统研究和具有自相关(SI)CR原子的多层,我们发现自我交流可以增强层间磁耦合。超交换相互作用仍然主导着层间磁交换相互作用,这导致相邻VDW层之间的铁磁耦合。 CGT双层在Cr自我裂化后保持HM的FM顺序,而与自我裂化的CR(CRSI)原子的浓度无关。最重要的是,自我交流的Crgete3(Si-CGT)双层显示出铁磁HM,独立于堆叠订单。此外,Si-CGT多层保留了FM订单,而与电影的厚度无关。然而,随着Fermi级别的状态增加,Si-CGT多层从HM转变为正常的自旋偏振金属。此外,Si-CGT-AA和Si-CGT-AB的磁各向异性能量(MAE)为-0.160和-0.42 MEV/.F.U。,由CRSI原子调节。 Si-CGT-AA和Si-CGT-AB的MAE不同,因为Cr的D轨道之间的杂交相互作用不同。 Si-CGT多层的磁性易于轴(EA)从CGT的[001]转到[100]方向,与堆叠订单无关。它起源于MAE主要由Te Atoms的PX和PY,PY和PZ轨道之间的杂交造成的贡献,显然是在引入CRSI时削弱的。 Si-CGT多层在300和500 K处显示出良好的动力学,热和磁稳定性。这些发现找到了一种有希望的方法来操纵CGT多层和其他VDW磁铁的层间交换相互作用和磁性特性。
Two-dimensional intrinsic ferromagnetic half-metal (HM) are important for the spintronics. Manipulating the interlayer magnetic coupling of van der Waals magnetic materials is an important method to control magnetoelectric properties, which is especially useful for the spintronics. Here, based on systematical research of CrGeTe3 (CGT) bilayer and multilayers with s of self-intercalated (SI) Cr atom, we find that self-intercalation can enhance the interlayer magnetic coupling. The super-exchange interaction still dominates interlayer magnetic exchange interaction, which results in ferromagnetic coupling between neighboring vdW layers. CGT bilayer keeps HM with FM order after Cr self-intercalation, independent of self-intercalated Cr (CrSI) atoms' concentration. Most importantly, self-intercalated CrGeTe3 (SI-CGT) bilayers show ferromagnetic HM, independent of stacking orders. Moreover, SI-CGT multilayers keep FM order, independent of films' thickness. However, SI-CGT multilayers transform from HM into normal spin-polarized metal, as the states at the Fermi-level increases. Moreover, magnetic anisotropy energy (MAE) of SI-CGT-AA and SI-CGT-AB are -0.160 and -0.42 meV/.f.u., which are modulated by CrSI atoms. The MAE of SI-CGT-AA and SI-CGT-AB are different, as the hybridization interaction between Cr's d orbitals is different. SI-CGT multilayers' magnetic easy axis (EA) switches from [001] of CGT to [100] direction, independent of stacking orders. It origins that MAE mainly contributed by hybridization between Te atoms' px and py, py and pz orbitals is obvious weakened as CrSI is introduced. SI-CGT multilayers show good dynamical, thermal, and magnetic stability at 300 and 500 K. These findings find a promising way to manipulate interlayer exchange interaction and magnetoelectric properties of CGT multilayers and other vdW magnets.