论文标题
高的启用比率梁插曲仪的相互作用,用于玻色石编码的Qubits上的大门
A high on-off ratio beamsplitter interaction for gates on bosonically encoded qubits
论文作者
论文摘要
在高质量的超导微波腔中编码值编码的量子功能提供了在单个设备中执行第一层误差校正的机会,但提出了一个挑战:如何在引入最小数量的其他误差通道时控制量子振荡器?我们通过使用3波混合耦合元件来设计该控制问题的两倍部分,以设计可编程的Beamsplitter互动,而在两个骨架模式之间相互作用,而不超过频率超过八度的频率,而无需引入主要的额外的腐烂源。将其与分散耦合的Transmon提供的单振荡器控制结合,为多个编码Qubits的量子控制提供了一个框架。 BeamSplitter交互$ g_ \ text {bs} $相对于振荡器变形的时间尺度快速,使$ 10^3 $ beamsplitter操作每个连贯性时间都超过$ 10^3 $ beamsplitter操作,并且接近用于单个振荡器控制的分散耦合$χ$的典型速率。此外,可编程耦合是设计的,而无需在振荡器之间添加不需要的相互作用,这可以通过运营的高势比率来证明,该旋转率可能超过$ 10^5 $。然后,我们引入了一个新协议,以实现“混合控制的S-wap操作”,以$ g_ {bs} \ actocy $ $,其中Transmon为两个骨模式的交换提供了控制位。最后,我们在交换测试中使用此门将一对骨气缸投射到一个钟状状态,其测量校正的保真度为$ 95.5 \%\ pm pm 0.2 \%$。
Encoding a qubit in a high quality superconducting microwave cavity offers the opportunity to perform the first layer of error correction in a single device, but presents a challenge: how can quantum oscillators be controlled while introducing a minimal number of additional error channels? We focus on the two-qubit portion of this control problem by using a 3-wave mixing coupling element to engineer a programmable beamsplitter interaction between two bosonic modes separated by more than an octave in frequency, without introducing major additional sources of decoherence. Combining this with single-oscillator control provided by a dispersively coupled transmon provides a framework for quantum control of multiple encoded qubits. The beamsplitter interaction $g_\text{bs}$ is fast relative to the timescale of oscillator decoherence, enabling over $10^3$ beamsplitter operations per coherence time, and approaching the typical rate of the dispersive coupling $χ$ used for individual oscillator control. Further, the programmable coupling is engineered without adding unwanted interactions between the oscillators, as evidenced by the high on-off ratio of the operations, which can exceed $10^5$. We then introduce a new protocol to realize a hybrid controlled-SWAP operation in the regime $g_{bs}\approxχ$, in which a transmon provides the control bit for the SWAP of two bosonic modes. Finally, we use this gate in a SWAP test to project a pair of bosonic qubits into a Bell state with measurement-corrected fidelity of $95.5\% \pm 0.2\%$.